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Abstract

This research explores the predictive capabilities of three distinct modeling approaches—
Linear Regression, Random Forest, and Long Short-Term Memory (LSTM)—in forecasting
stock prices using data from 29 companies, including the S&P 500 index, spanning from
January 1, 2000, to June 27, 2024. Through the utilization of historical time-series data, the
study evaluates model performance based on key statistical indicators: Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), and the coefficient of determination (R?). The
findings indicate that while Random Forest outperforms Linear Regression in terms of
accuracy, the LSTM model consistently delivers superior results, attributed to its strength in
capturing sequential dependencies within financial data. These insights contribute to the
growing body of literature in financial analytics by highlighting the comparative strengths of
traditional, ensemble-based, and deep learning methods for stock market prediction.
Furthermore, the study opens up avenues for integrating advanced temporal models into

future financial forecasting frameworks.
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INTRODUCTION

Financial forecasting remains a
fundamental tool for both market
analysts and investors, serving as a
foundation for anticipating market
behavior and informing strategic
decision-making. In recent years, the
application of machine learning (ML)
techniques in the financial sector has

gained prominence due to their
potential to improve predictive
accuracy in complex and volatile

environments. This study examines the
predictive capabilities of three distinct
ML models: Linear Regression, Random
Forest, and Long Short-Term Memory
(LSTM) networks. These models were
selected based on their distinct
methodological frameworks and their
respective abilities to model various
aspects of financial time series data.

The dataset utilized in this study spans
from January 1, 2000, to June 27, 2024,
and includes historical stock data from
29 publicly listed companies across
various sectors, alongside the S&P 500
index. To enhance the robustness of
model evaluation, additional financial
indicators—particularly  risk-adjusted
performance  measures -  were
integrated. The efficiency of each model
was assessed using standard
performance metrics, including Mean
Squared Error (MSE), Root Mean
Squared Error (RMSE), and the
coefficient of determination (R?). The
overarching goal of this research is to
evaluate and compare the effectiveness
of these models in forecasting stock
prices, thereby facilitating the
development of consistent and data-
driven investment strategies.
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By conducting a comprehensive
comparative analysis, this study not only
highlights the respective strengths and
limitations of classical and advanced ML
models but also underscores the
superior capacity of deep learning
models—particularly LSTM networks—
in  capturing complex temporal
dependencies and nonlinear dynamics
in financial data. This contributes to the
growing academic discourse on the
integration of artificial intelligence in
financial forecasting and its implications
for decision-making in capital markets.

2.0 MACHINE LEARNING MODELS
(REVISED)

2.1 Linear Regression

Linear Regression is a foundational
supervised learning method widely
employed in predictive modeling,
including financial applications. Its core
objective is to identify a linear
relationship between a set of
independent variables and a continuous
dependent variable. In stock price
forecasting, this model assumes that
historical features—such as past prices
and market indicators—can be linearly
mapped to future price movements
(Burkov, 2019). The model operates by
minimizing the residual sum of squares
to determine the best-fitting linear
function.

Due to its simplicity and interpretability,
Linear Regression remains popular
among financial practitioners. However,
its major drawback lies in its inability to
model the nonlinear and dynamic
relationships that characterize financial
markets. Sharma and Gupta (2018)
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demonstrated that while Linear
Regression is capable of explaining
fundamental market patterns, it fails to
adequately capture the high volatility
and complex dependencies present in
real-world stock price  behavior.
Consequently, although it serves as a
useful  benchmark, its predictive
performance is often outmatched by
more advanced nonlinear models.

2.2 Ensemble Learning: Random Forest

Random Forest is an ensemble learning
algorithm that constructs a multitude of
decision trees and aggregates their
outputs to improve prediction accuracy
and generalization. Introduced as a
robust alternative to single-decision-
tree models, Random Forest is
especially proficient at capturing
nonlinear relationships and interactions
within large-scale datasets (Adedeji,
Adebayo, & Abubakar, 2020). Unlike
Linear Regression, Random Forest does
not assume a fixed functional form
between inputs and outputs, allowing it
to model more complex financial
behaviors.

Each tree in the ensemble is trained on
a bootstrapped sample of the data, and
at each decision node, a random subset
of features is evaluated. This
randomness, both in data sampling and
feature selection, enhances the
diversity among trees, thereby reducing
overfitting and improving model
generalization. Hoque et al. (2020)
reported that Random Forest
consistently outperformed traditional
models in stock return prediction when
enriched with historical and
macroeconomic features.
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The architecture of Random Forest also
offers interpretability benefits.
Specifically, the algorithm can evaluate
feature importance scores, enabling
analysts to identify which variables—
such as previous closing prices, volume,
or financial ratios—most significantly
affect price movements. Furthermore,
its resilience to outliers and noisy data
makes it highly suitable for financial
datasets, which are often plagued by

irregularities and sudden market
shocks.
Despite these advantages, Random

Forest has an inherent limitation: it lacks
a mechanism for modeling sequential
dependencies across time. As a result,
while the model is capable of learning
intricate patterns from static features, it
cannot inherently account for long-term
temporal correlations in financial time
series data.

2.3 Long Short-Term Memory (LSTM)
Networks

Long Short-Term Memory (LSTM)
networks are a specialized form of
Recurrent Neural Networks (RNNSs)
designed to overcome the vanishing
gradient  problem that hinders
traditional RNNs from learning long-
range dependencies. LSTMs achieve this
through a sophisticated internal
architecture that incorporates memory
cells and three types of gates—input,
forget, and output gates—that regulate
the flow of information over time (Ma,
Han, & Fu, 2019).

The forget gate, governed by a sigmoid
activation function, determines which
information from the previous cell state
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should be discarded. The input gate uses
a combination of sigmoid and tanh
functions to decide what new
information should be stored in the
current cell state. The output gate filters
the updated cell state and produces the
output for the current time step. This
architecture allows LSTMs to selectively
retain or discard information, making
them particularly effective for time-
series forecasting.

In the context of financial modeling,
LSTM networks have demonstrated
exceptional performance in capturing
both short- and long-term
dependencies in stock price data.
Studies such as Moghar and Hamiche
(2020) have shown that LSTM models
outperform classical approaches like
ARIMA and Support Vector Machines
(SVMs) in stock price prediction.
Bhandari et al. (2022) further validated
the effectiveness of LSTMs by using
them to forecast the S&P 500 index,
incorporating both technical indicators
and macroeconomic variables.

Hybrid models that combine LSTM with
Convolutional Neural Networks (CNNs)
have also emerged as powerful tools for
modeling spatial-temporal
dependencies in financial data. Selvin et
al. (2017) demonstrated that such
integrated architectures yield
significantly  improved  forecasting
accuracy, reinforcing the potential of
LSTM-based models in complex financial
environments.

Unlike traditional models, LSTM
networks are well-equipped to handle
the nonlinearity, nonstationarity, and
dynamic nature of financial markets.
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Their ability to learn from sequential
patterns makes them ideal for
applications where time context is
crucial—such as predicting future price
movements based on historical data
trends.

3.1 Data Collection (REVISED)

This study employed a comprehensive
dataset comprising historical stock
market data from 29 publicly listed
companies operating in diverse industry
sectors, alongside the S&P 500 index.
The data spans a period from January 1,
2000, to June 27, 2024, capturing a wide
range of market cycles and economic
conditions. Each observation within the
dataset includes essential trading
variables such as the stock ticker, date,
opening and closing prices, daily high
and low values, adjusted closing prices,
and trading volume.

To incorporate broader financial market
conditions into the analysis, the dataset
was further augmented with additional
macro-financial indicators. Specifically,
the risk-free rate was represented by
the 10-year average vyield of U.S.
Treasury Bills, calculated from June 27,
2014, to June 27, 2024. For simplicity in
the modeling framework, this risk-free
rate was assumed to remain constant
throughout the analysis period.
Additionally, the beta coefficient for
each stock was estimated, which serves
as a measure of the stock’s systematic
risk relative to market movements.

The complete dataset was retrieved
using the yfinance AP| in Python, a
reliable and widely adopted tool for
accessing financial data
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programmatically. To strengthen the
dataset's analytical capabilities, several
derived metrics were computed for
both individual companies and the
benchmark index (S&P 500). These
include daily returns, relative
performance, expected returns, alpha
(excess returns over the benchmark
adjusted for risk), and absolute returns.
These derived variables provide deeper

insights into asset behavior and
facilitate rigorous performance
evaluation.

The enhanced dataset was organized
into a structured DataFrame to enable
smooth integration into subsequent
analytical and predictive processes. Key
columns in the final DataFrame include:
date, ticker symbol, stock return, S&P
500 return, volume, adjusted close
price, high, low, expected return, risk-
free rate, relative performance, and
alpha. This well-structured dataset
formed the foundation for all
subsequent stages of modeling and
analysis in the study, supporting a
robust exploration of machine learning
applications in stock price forecasting.

3.2 Data and

Preprocessing

Loading

In the domain of algorithmic trading and
predictive financial modeling, data
preprocessing is a fundamental step
that directly influences the
effectiveness and accuracy of machine
learning algorithms. Numerous types
and sources of financial market data
exist, each offering unique features that
may contribute to model precision. To
ensure compatibility with our selected
algorithms—Linear Regression, Random
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Forest, and Long Short-Term Memory
(LSTM)—a comprehensive data cleaning
and  preprocessing routine  was
undertaken.

The raw dataset was initially sorted, and
the 'Date' column was converted into a
standard datetime format, which is
essential for time-series integrity.
Subsequently, the dataset underwent
structural refinement through several
operations: renaming of columns for
improved readability, conversion of
data types for consistency, reordering
based on temporal sequence, and
targeted replacement of anomalous
entries. These steps ensured that the
dataset structure was suitable for
downstream analysis and machine
learning tasks.

To ensure the validity and completeness
of the data, all missing entries and zero
values were identified and eliminated or
corrected. Missing values were imputed
using the forward-fill method, which is
particularly effective in time-series
contexts where maintaining continuity
across temporal sequences is vital (Lee
& Kim, 2014). After this procedure, the
dataset was validated for completeness,
and the final list of selected stocks and
the benchmark index was established
with cross-verification.

The next critical step involved the
integration of relevant Python libraries
required for financial forecasting and
portfolio modeling. These libraries serve
as foundational tools throughout the
modeling pipeline. The random module
was employed for seed generation to
guarantee reproducibility. Pandas

facilitated data manipulation, while



Journal of Managerial Sciences and Studies Vol.3, No. 2, 2025

NumPy supported mathematical

operations on arrays. The warnings
module was used to suppress irrelevant
system notifications, and matplotlib.pyplot
served as the principal tool for
visualizing the dataset and model
outputs.

Normalization of features was executed

using the MinMaxScaler from the
sklearn.preprocessing module. This
transformation scaled all numerical

features—primarily stock prices—to a
uniform range between 0 and 1, thereby
preventing scale-based distortions
during model training and enhancing
convergence. This scaling was uniformly
applied across all companies to
maintain consistency in the input
feature space.

To implement the selected algorithms,
several modeling libraries were also
imported. For Linear Regression, we

utilized the LinearRegression

mean_squared_error, r2_score

and
functions from the sklearn.linear_model
package. The Random Forest Regressor
was incorporated from sklearn.ensemble,

For the LSTM model, we imported
Sequential from keras.models, LSTM and

Dense from keras.layers, load_model for
model persistence, and callback
functions from keras.callbacks to facilitate
model checkpointing and training
optimization (Zhao et al., 2017).

Following data  preparation, an
exploratory data analysis (EDA) phase
was conducted to examine underlying
patterns and trends. Utilizing Python’s
visualization libraries, key elements
such as adjusted closing prices, moving
averages, trading volume fluctuations,
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and daily percentage returns were
analyzed. These insights served to
inform modeling decisions and validate
assumptions prior to training predictive
models.

3.3 Linear Regression Model

To establish a baseline for evaluating
other forecasting models, a Linear
Regression model utilizing the Ordinary
Least Squares (OLS) method was
developed. The implementation was
performed using the LinearRegression()
function from the Scikit-learn library.
The model was trained on a dataset
comprising essential stock market
attributes—namely 'Open’, 'High', 'Low’,
'Volume', and 'SPX_Close'—with the
dependent variable being the 'Close'
price of individual stocks.

Before model training, data
normalization was performed using
MinMaxScaler, standardizing all features
to fall within the [0,1] range. This step is
essential  for  enhancing  model
performance, particularly in ensuring
faster convergence and minimizing the
impact of feature scale imbalances.
Temporal sequences were then
constructed, where each input instance
consisted of a 30-day historical window
of scaled data, aimed at predicting the
closing price for the subsequent trading
day. This sequence-based formulation is
instrumental in capturing short-term
temporal dependencies within stock
price movements.

The dataset was partitioned into
training and testing sets using an 80:20
split. Feature arrays were reshaped
accordingly to align with the structural
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requirements of the Linear Regression
model. Model training was executed on
the training subset, and predictive
performance was evaluated on both
training and testing datasets.

Model effectiveness was quantitatively
assessed using two principal metrics:
Mean Squared Error (MSE) and the
coefficient of determination (R?). MSE

predicted values, serving as an indicator
of predictive accuracy. Conversely, R?
evaluates the proportion of variance in
the dependent variable that is explained
by the model; a value approaching 1
denotes a highly explanatory model,
whereas values near 0 suggest limited
predictive power (Nguyen et al., 2019).

The results obtained from the Linear

measures the average squared Regression model are summarized in
discrepancy between actual and Table 1.
Table 1: Results from the Linear Regression Model
Metrics for the Linear Regression Model
Train MSE 29795.45
R"2 0.145
Test MSE 29128.74
R"2 0.137
While the model demonstrated to the actual training values (blue line).

relatively accurate predictions during
training—as reflected in low MSE and
moderately high R? values—it failed to
generalize effectively to the test
dataset. The elevated MSE values and
low R? scores during testing revealed
that the model lacked robustness in
handling unseen data, indicating
underfitting or a lack of capacity to
capture non-linear market behaviors.

To  facilitate a comprehensive
understanding of model behavior,
predictions for all firms were

consolidated and visualized in a single
comparative plot (Figure 2). This
visualization served an illustrative
purpose rather than functioning as a
model selection criterion. From this
collective representation, it is evident
that the model achieves a close fit to the
training data (green line) as compared
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However, the model significantly
diverges in its predictions on test data,
as seen in the noticeable disparity
between the red dashed line (test
predictions) and the orange dashed line
(actual test values). This divergence
underscores the model’s susceptibility
to overfitting—where the algorithm
memorizes the training patterns but
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lacks generalization capacity for new
data (Chen & Yu, 2015).
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Figure 2: Linear Regression Predictions vs Actual

As a result of these performance
limitations, the Linear Regression model
was excluded from further
consideration in the model selection
process. The performance metrics and
visual diagnostics unequivocally suggest
that more sophisticated algorithms are
required to effectively capture the
complex, nonlinear characteristics of
financial time series.

3.4 Random Forest Regression
Model

In order to enhance the predictive
accuracy of stock price forecasting, this
study employed the Random Forest
Regressor—an advanced ensemble
learning technique that integrates the
outputs of multiple decision trees to

bolster both model accuracy and
robustness.  This  approach  was
implemented using the

RandomForestRegressor module from the
sklearn.ensemble library. The
parameters included
which specifies the
construction of 50 individual decision
trees within the ensemble, thus
providing an optimal trade-off between
computational complexity and
predictive performance. Furthermore,

configuration
n_estimators=50,
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the max_depth parameter was set to 10,
which limits the maximum depth of
each tree to prevent overfitting while
enhancing the model's ability to
generalize to unseen data. To ensure
reproducibility, random_state=42  was
utilized as a fixed seed for the random
number generator.

The training process involved the use of
a dataset comprising various historical
financial metrics such as daily stock
prices (opening, high, low, and closing
prices), trading volume, and a range of
additional technical indicators deemed
relevant to market movement. These
features were selected based on their
empirical association with stock price
behavior, as supported by prior
research (Zhou et al.,, 2014; Wang &
Guo, 2017).

The model’s performance was
evaluated through two standard
regression metrics: the Mean Squared
Error (MSE), which quantifies the
average squared difference between
actual and predicted values, and the R-
squared (R?) score, which measures the
proportion of variance in the target
variable explained by the model. Table 2
presents the corresponding evaluation
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results, offering insight into the model’s
predictive capability.

Table 2: Results from the Random Forest Regression Model

Metrics for the Random Forest Regression Model
Train MSE 28769.49
R? 0.1749
Test MSE 29691.70
R’ 0.1201
The Mean Squared Error (MSE) 12.01% of the variance in the testing

observed on the training dataset was
28,769.49, indicating the average
squared deviation between the model’s
predicted values and the actual stock
prices. While a lower MSE value is
typically indicative of improved model
performance, it does not necessarily
reflect the model's ability to generalize
to unseen data. The MSE obtained from
the testing dataset was slightly higher,
recorded at 29,691.70, suggesting that
the model exhibits increased error
when applied to new data points. This
discrepancy, though modest, points to
the model's limited generalizability
beyond the training context.

In terms of explanatory power, the R-
squared (R?) score for the training data
was 0.1749, indicating that only 17.49%
of the variance in stock prices within the
training set could be accounted for by
the model. This relatively low coefficient
of determination underscores the
model’s inability to fully capture the
underlying patterns and dynamics
governing stock price movements.
Furthermore, the R? value for the test
set was even lower, at 0.1201, signifying
that the model could explain just
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data. This decline in performance
reinforces the concern that the model
lacks sufficient generalization capability
and may not be effectively capturing the
fundamental relationships within the
data (Zhou et al.,, 2015; Chen & He,
2017).

The divergence in predictive accuracy
between the training and testing
datasets—reflected in both MSE and R?
values—suggests that while the model
may have moderately fit the training
data, it fails to replicate this
performance on unseen data. Such
outcomes often point to potential issues
such as suboptimal feature selection,
insufficiently informative predictors, or
the inherent complexity of financial
time series forecasting. As illustrated in
Figure 3, the model's predictions on the
training dataset (depicted by the green
line) exhibit strong alignment with
actual values (blue line), suggesting a
degree of overfitting. However, when
evaluated against the testing dataset,
predictions (red dashed line) deviate
considerably from the actual stock
values (orange dashed line), confirming
a diminished ability to generalize.
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To holistically assess model
performance across all observed firms,
we aggregated the results into a
composite visualization (Figure 3). This
unified representation allows for
comparative analysis between the
training and testing phases across the

dataset. While the Random Forest
model demonstrates improved
accuracy over Linear Regression—

particularly in its alignment with the
testing data—the magnitude of
forecasting error remains substantial.

These inconsistencies confirm that the
model is still inadequate for reliably
predicting stock prices. Consequently,
based on the observed performance
metrics, we opted to discontinue
further evaluation using this model. The
visual confirmation aligns with the
guantitative results, reaffirming that the
Random Forest approach, despite being
more advanced than Linear Regression,
is still not well-suited for high-fidelity
stock price forecasting in this context.
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Figure 3: Random Forest Predictions vs Actual

3.5 Comparative Evaluation of Linear
Regression and Random Forest Models

A thorough comparative evaluation
between the Linear Regression and
Random Forest models reveals that the
Random Forest algorithm offers
markedly superior performance,
particularly in terms of its ability to
generalize predictions to previously
unseen test data. While both algorithms
demonstrate acceptable levels of fit
when applied to training data, the
Linear Regression model exhibits a
pronounced tendency toward
overfitting. This overfitting is evidenced
by a weakened correlation between the
model’s predictions and the actual
values in the test dataset.

In contrast, the Random Forest model
presents a stronger alignment between
its predicted outputs and the actual
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observations in the test set. This higher
predictive accuracy underscores the
Random Forest model’s enhanced
capability for generalization beyond the
training environment. The robustness of
Random Forest in handling nonlinear
relationships and complex interactions
among variables further supports its
advantage in predictive modeling, as
highlighted by recent studies (Zhao et
al., 2015; Nguyen & Bai, 2017).

Despite its improved generalization
performance, the Random Forest model
is not entirely free from limitations.
Minor discrepancies persist between its
predicted values and actual outcomes,
indicating that while Random Forest
reduces overfitting relative to Linear
Regression, some residual prediction
error remains inevitable. Nevertheless,
these deviations are generally less
significant than those observed in the
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Linear Regression model, affirming
Random Forest's relative superiority in
stock price forecasting tasks (Chen et al.,
2016; Lee et al., 2018).

LSTM Model

Despite the relatively better
performance of the Random Forest
model compared to Linear Regression,
its predictions on the test dataset still
exhibit notable deviations from actual
values. This suggests a need for further
refinement through either
hyperparameter optimization or the
adoption of more advanced modeling
architectures capable of capturing the
complexities inherent in financial time
series data (Zhang et al., 2017; Heaton
et al,, 2016).

In pursuit of improved accuracy and
deeper temporal learning, this study
employed a Long Short-Term Memory
(LSTM) neural network model. The
LSTM, a variant of recurrent neural
networks (RNN), was implemented
using the TensorFlow and Keras libraries
due to its proven capability in learning
long-term dependencies within
sequential data, making it particularly
suitable for time series forecasting tasks
such as stock price prediction (Fischer &
Krauss, 2018; Livieris et al., 2019).

Model Development and
Architecture
To tailor predictions to individual

company dynamics, a separate LSTM
model was developed for each stock
listed in the dataset, including the S&P
500 index as a benchmark. The primary
focus was on forecasting the 'Close’
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price, with the corresponding 'Date'
variable included for  temporal
alignment. For each model, a sliding
window of 60 consecutive closing prices
was used as the input sequence to
predict the closing price on the 61st day.

1. Data Isolation and
Preprocessing: The dataset was curated
to retain only the 'Date' and 'Close'
columns. This filtered dataset served as
the foundation for constructing a
supervised learning problem where the
target variable was the next day's
closing price, and the features consisted
of the previous 60 days' closing prices.

2. Model Architecture:
o First LSTM Layer:
Configured with 50 units and

return_sequences=True to pass the full
output sequence to the next LSTM layer.
o Second LSTM Layer:
Comprised of another 50 units with
return_sequences=False, producing only the
final output of the sequence.

o Dense Layers: A fully
connected (Dense) layer with 25
neurons, followed by a final Dense layer
with a single output neuron to predict
the next closing price.

3. Model Compilation: The
architecture was compiled using the
Adam optimizer—a widely adopted
stochastic gradient-based optimizer—
paired with the Mean Squared Error
(MSE) as the loss function, suitable for
continuous value prediction.

4, Checkpointing  Strategy: A
ModelCheckpoint callback was integrated
into the training pipeline to
automatically save the model weights at
the epoch vyielding the lowest training
loss. This ensures that the most
performant version of the model is
preserved for inference.
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Model Training Process

The training workflow for each LSTM
model involved the following stages:

1. Input Sequence Generation: For
every stock, sequences of 60 prior
closing prices were extracted as
features (x), and the subsequent (61st)
closing price was designated as the label
(y), forming the dataset required for
supervised learning.

2. Train-Test Split: Approximately
95% of the data was reserved for
training, with the remaining 5% used for
validation. Specifically, training data
spanned from March 1, 2000, to June
27, 2024. The test set was then

constructed to simulate  future
predictions for a 3-week horizon
starting from June 28, 2024.

3. Training Configuration: Each

model was trained over 20 epochs with
a batch size of 1, enabling fine-grained
weight updates and potentially
enhanced learning performance at the
cost of longer training times.

Prediction and Application

Using historical stock price data ranging
from January 1, 2000, to June 27, 2024,
the trained LSTM models were
employed to forecast short-term future
prices for each respective stock. The
LSTM's capacity to capture sequential
patterns and learn from temporal
structures makes it a promising tool for
modeling the complex behavior of
financial markets, consistent with prior
empirical findings (Nelson et al., 2017;
Wang et al., 2019).

A comprehensive  analysis  was
conducted involving 29 companies
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across diverse industrial sectors. The
historical stock closing prices were
normalized using the MinMaxScaler
method, scaling the values within a 0 to
1 range to optimize model performance.
For each company, a rolling window of
sixty trading days was employed to
construct sequential datasets used as
inputs for the Long Short-Term Memory
(LSTM) models. These models had been
pre-trained using historical data unique
to each respective company and were
subsequently applied to forecast closing
prices within the designated test period.

The forecasting process focused on a
three-week interval beginning June 28,
2024, during which predicted stock
prices were inverse-transformed to
their original scale for interpretability.
To assess predictive accuracy, the Root
Mean Squared Error (RMSE) metric was
utilized. Results were visualized through
comparative line graphs of actual versus
predicted closing prices, with June 27,
2024, marked as a reference benchmark
for performance evaluation.

The predict_for_company function
encapsulates the entire forecasting
pipeline for an individual firm. This
function undertakes data
preprocessing, normalization, and
sequence construction by collecting the
previous 60-day closing prices to serve
as model inputs. Upon generating
forecasts, the function reverts the
output values to their original monetary
scale and computes the RMSE to
evaluate prediction fidelity.
Additionally, it produces graphical
representations comparing actual prices
to the model’s projections.
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Further, the predict_future_price function
was developed to estimate upcoming
closing prices, while the
predict_for_all_companies module
generalized this forecasting framework

to all firms wunder study. This
implementation ensures consistent
preprocessing  protocols,  uniform

sequence handling, and comparable
forecasting accuracy across the dataset.
The adopted methodology offers a
structured, replicable approach to time-
series forecasting in the financial
domain, harnessing the temporal
learning capabilities of LSTM neural
networks (Zhou et al., 2015; Brownlee,
2017; Liu et al., 2019).

Prediction Strategy

The study harnessed historical daily
stock price data from January 1, 2000,
through June 27, 2024, across multiple
firms to generate predictive insights
using LSTM-based modeling techniques.
By standardizing the input features,
applying consistent sequence
formatting, and leveraging model
generalization across companies, this
framework facilitates reliable
forecasting of stock price movements,
reinforcing the potential of deep
learning models in financial market
prediction tasks (Chen et al., 2014;
Fischer & Krauss, 2018).

4.0 FINDINGS AND RESULTS

The results of this study highlight the
comparative predictive capabilities of
three machine learning models: Linear
Regression, Random Forest, and Long
Short-Term Memory (LSTM). Among
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these, the Linear Regression algorithm
exhibited the highest error rate, as
evidenced by a Root Mean Squared
Error (RMSE) of 172.64 on the training
dataset and 170.74 on the testing
dataset. These metrics suggest that the
model  struggled to  generalize
effectively when exposed to unseen
data. In contrast, the Random Forest
model achieved moderate
improvement, yielding a lower RMSE of
169.59 on the training setand 172.31 on
the test set. Despite this marginal
enhancement, it still faced difficulties in
achieving robust generalization.

The LSTM model, however,
outperformed the other two by a
significant margin. It recorded the
lowest RMSE value of 0.0183 and an
exceptionally low Mean Squared Error
(MSE) of 0.000335 for the PH stock
dataset. These results reflect the
model’s superior ability to capture
intricate temporal dependencies and
deliver more accurate forecasts. The
LSTM's capacity to model sequential
data effectively allows it to learn
underlying stock price patterns and
improve predictive accuracy over time.

Overall, these  findings clearly
demonstrate that the LSTM model
possesses the highest predictive
strength among the  evaluated
algorithms, particularly in the context of
time series-based financial forecasting.
Its performance underscores the
importance of incorporating deep
learning architectures for tasks that
require temporal sensitivity and
adaptive learning.
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Table 4: Comparative Performance Metrics of Linear Regression, Random Forest, and LSTM

Models

Model MSE MSE RMSE RMSE | RMSE (PH | MSE (PH

(Train) (Test) (Train) (Test) Company) Company)
Linear 29,79545 | 29,128.74 | 172.64 170.74 N/A N/A
Regression
Random Forest | 28,769.49 | 29,691.70 | 169.59 172.31 N/A N/A
LSTM (Best | N/A N/A N/A N/A 0.0183 0.000335
Performing)

4.1 Stock Screening and Evaluation for
Risk-Averse Investors: A Predictive
Modeling-Based Approach

This section elaborates on an in-depth
examination of equity selection and
assessment  strategies  specifically
designed for investors with a
conservative risk profile. The analytical
framework centers around a predictive
modeling technique that integrates the
Long Short-Term Memory (LSTM) neural
network, which is employed for
forecasting future stock prices. LSTM
was selected due to its superior capacity
to model temporal dependencies within
sequential financial data,
outperforming traditional machine
learning models such as Random Forest
and Linear Regression in terms of
predictive accuracy and robustness
(Wang et al., 2017; Zhang et al., 2018).

The forecasted prices generated by the
LSTM network serve as the foundation
for calculating anticipated returns.
These expected returns are derived as
the percentage change between the
current stock price and the model’s
forecasted value. To assess the
investment potential of each stock,
several  evaluative  metrics are
employed. Forecasting precision is
measured using the Root Mean Square
Error (RMSE), while investment
performance is evaluated using
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expected return, volatility—expressed
as the standard deviation of daily
returns—and  performance  ratios
including the Sharpe ratio, alpha, and
Treynor ratio (Li & Li, 2015; Chen et al.,
2016). These indicators together enable
comprehensive risk-adjusted return
analysis and allow benchmarking
performance against the S&P 500 index,
providing essential insights for informed
portfolio decisions.

The screening methodology applies this
evaluative framework across stocks
observed during the period from
January 1, 2024, to July 22, 2024. Each
stock undergoes analysis based on three
key metrics: expected return, volatility,
and risk-adjusted performance. To filter
investment-worthy stocks, a minimum
annual return threshold of 20% (0.2) is
set as the benchmark criterion,
facilitating objective selection aligned
with investor goals.

The execution phase of this model
involves the retrieval of historical stock
data via Yahoo Finance, followed by a
comprehensive performance analysis
using the previously described
indicators. This is supplemented by the
generation of a synthesized analytical
report to present findings in a
structured format. By combining
historical data trends with risk-adjusted
performance analytics, this predictive
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framework enables investors to
systematically identify stocks with
strong fundamentals. It further ensures
that the decision-making process is
aligned with individual risk preferences
by placing emphasis on long-term
stability and return potential (Khan et
al., 2014; Zhou & Wang, 2019). As such,
this data-driven strategy provides a
solid foundation for constructing equity
portfolios tailored to the needs of risk-
averse investors while supporting their
long-term financial planning objectives.

Validation of Stock Evaluation
Methodology

Ensuring the validity and reliability of
stock assessment methodologies is a
critical step in substantiating the
robustness and relevance of the
employed analytical approach. One
conventional yet essential practice
involves filtering the dataset to include
only companies listed within a
predefined index and time horizon. This
enables the study to maintain a focused
scope, thereby improving the
applicability of the findings to
contemporary investment frameworks.

To construct a comprehensive financial
performance profile for each firm,
several key indicators are computed—
namely, Expected Return, Alpha, Beta,
Stock Return, and the S&P 500 Index
Return. These indicators are
foundational in the domain of
investment analysis: Expected Return
captures the mean forecasted return on
an asset; Alpha quantifies a stock’s
performance in excess of a benchmark
index, where positive values suggest
outperformance; Beta measures
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systematic risk or sensitivity relative to
market movements; Stock Return
reflects realized gains or losses; and
Relative Return offers a comparative
view against a benchmark. Additionally,
the Risk-Free Rate is utilized as a
reference point for determining the
excess return of an investment.

To facilitate year-over-year comparison,
Expected Return is annualized by
multiplying the daily return by the
standard 252 trading days. This
transformation is a widely accepted
practice in financial modeling. The
classification of stocks based on
whether their annualized expected
return  surpasses a  predefined
performance threshold further aligns
with conventional investment screening
techniques, assisting in the
identification of securities that meet
specified return objectives.

However, despite the strength of this
framework, several enhancements
could elevate its efficacy. The current
methodology does not account for
portfolio allocation or the proportional
distribution of capital among selected
assets—a fundamental component of
portfolio theory and diversification
strategy (Zhou & Wang, 2014; Li et al.,
2016). While Beta offers an estimate of
systematic risk, a more robust risk
assessment  would benefit from
incorporating additional risk indicators
such as price volatility and Value at Risk
(VaR), which account for downside risk
exposure (Chen & Xie, 2017). The
integration of risk-adjusted
performance metrics, particularly the
Sharpe Ratio or Sortino Ratio, could
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further refine the evaluation of

investment alternatives.

Moreover, while historical performance
provides essential insights, relying solely
on past returns may be insufficient for
future-oriented decision-making. The
inclusion of predictive analytics and
fundamental analysis - such as earnings
forecasts, balance sheet evaluations,
and sector-specific indicators - may
strengthen forward-looking investment
decisions. Combining these elements
would result in a more nuanced
assessment of the financial health and
potential of each security.

5.0 Conclusion

This research introduces a methodical
framework for stock selection and
evaluation, leveraging advanced
predictive modeling and comprehensive
financial data analytics. Through the
application of Long Short-Term Memory
(LSTM) neural networks, alongside
performance metrics such as Expected
Return, Alpha, and Beta, the study
establishes a robust methodology
tailored to the preferences and
objectives of risk-averse investors.

The validation strategy—consisting of
data filtration, metric aggregation, and
the annualization of returns—serves to
reinforce the integrity and relevance of
the resulting insights. This data-driven
approach enables the systematic
identification of attractive investment
opportunities based on risk-adjusted
criteria and historical performance
benchmarks. By aligning these findings
with conservative investment
principles, the study contributes
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meaningful advancements to the field of
quantitative financial analysis.

Nevertheless, opportunities for
refinement remain. Future research
could benefit from incorporating
broader performance metrics, adopting
more sophisticated risk quantification
tools, and exploring dynamic portfolio
allocation  strategies.  Additionally,
integrating predictive models with
fundamental financial research could
yield deeper insights into prospective
performance, ultimately enhancing
both asset selection and portfolio
construction methodologies.

Collectively, this study not only provides
a scientifically grounded model for
equity evaluation but also highlights
several avenues for future investigation
aimed at optimizing the investment
decision-making process for
conservative investors.
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